Transcript
15 - TRIGONOMETRY
Page 1
( Answers at the end e nd of all questions que stions ) (1)
In triangle triangle PQR, ax
2
+ b x + c = 0,
(a) a = b + c
(2)
If cos
-1
Let
2
are the roots of the equation
2
0, then (c) b = c
(d) b = a + c
[ AIEEE 2005 ]
C =
(b) a + b
x - cos
-1
y 2
=
(c) a + b+c
, then 4x
(b) 4
( b ) A.P.
,
2
( c ) 4 sin
(d) c + a
- 4xy cos 2
+ y
2
[ AIEEE 2005 ]
is equal to
( d ) - 4 sin
2
( c ) Arithmetic-Geometric Arithmetic-Geometric Progression
be such that
-
[ AIEEE 2005 ]
-
<
< 3 . If sin
( d ) H.P.
= -
+ sin
[ AIEEE 2005 ]
21 , then the value value of 65
is
2
(a) -
3
(b)
130
If u = sin
3
(c)
130
a 2 cos 2
6
( a) 2 (a
2
2
+ b )
b 2 sin 2
(b) 2
The sides sides of a triangle triangle are
a2
sin
(d) -
65
a 2 sin 2
the maximum and minimum minimum values of of u
(7)
Q
and tan
If in triangle ABC, the altitudes from the vertices A, B, C on opposite sides are in H.P., then sin A, sin B, sin C are in
cos
(6)
P
If tan
. If r is the inradius and R is the circumradius circumra dius of the 2 triangle ABC, then 2 ( r + R ) equals
( a ) G.P.
(5)
a
In triangle ABC, let
( a ) 2 sin 2
(4)
2
.
(b) c = a + b
(a) b + c
(3)
R =
b2
,
2
[ AIEEE 2004 ]
65
b 2 sin 2
, then difference between
is given by
(c) (a + b)
cos
6
and
1
2
2
( d) ( a - b )
sin
cos
[ AIEEE AIEEE 2004 ]
for some 0 <
<
2
Then the greatest angle of the triangle is ( a ) 60
( b ) 90
( c ) 120
( d ) 150
[ AIEEE 2004 ]
.
15 - TRIGONOMETRY
Page 2
( Answers at the end e nd of all questions que stions )
(8)
A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of a river is 60 and when he retires 40 m away from the tree, the angle of elevation becomes 30 . The breadth breadth of the the river is ( a ) 20 m
(9)
( b ) 30 m
If in a triangle a cos
( a ) in A. P.
2
( c ) 40 m
C 2
+ c cos
( b ) in G. P.
2
( d ) 60 m
A 2
=
( c ) in H. P.
[ AIEEE 2004 ]
3b , then the sides a, b and c are 2
( d ) satisfy a + b = c
[ AIEEE 2003 ]
( 10 ) The sum of the radii of of inscribed and circumscribed circumscribed circles, for an n sided regular polygon of side a, is ( a ) a cot
( b ) b cot
2n
(c)
n
a cot 2
(d)
2n
a cot 4
2n
[ AIEEE 2003 ] 3
( 11 ) The upper uppe r
tan - 1
3
at a point in 5 4 the horizontal plane through its foot and at a distance 40 m from the foot. The height of the vertical pole is ( a ) 20 m
th portion of a vertical pole pole subtends an angle angle
( b ) 40 m
( 12 ) The value of cos (a)
3 2
2
2
1
( a) l a l<
[ AIEEE 2003 ]
- 120 ) is
(d) 0
-1
1
( b) l al
2
+ 120 ) + cos (
(c) 1
( 13 ) The trigonometric trigonometric equation sin
( d ) 80 m
2
+ cos (
1 2
(b)
( c ) 60 m
x = 2 sin (c)
2
1 2
[ AIEEE 2003 ]
-1
a has a solution for
< lal <
1 2
( d ) all real values of a [ AIEEE 2003 ]
( 14 ) If sin
(a)
+ sin a2
= a and cos b2
4 - a2 - b2 a2
(c) 4
a2
b2 b2
(b)
(d)
+ cos
= b, then the value of tan
θ
2
is
4 - a2 - b2 a2 4
b2 a2
a2
b2 b2
[ AIEEE 2002 ]
15 - TRIGONOMETRY
Page 3
( Answers at the end of all questions )
( 15 ) If tan
-1
2
(a)
2
, then the value of x is
3
(c)
1
-1
1
-1
+ tan
7
2
(c)
4
(d)
3
+ tan
3
(b)
2
(x) =
(b) 3
( 16 ) The value of tan
(a)
-1
( x ) + 2 cot
3 - 1 3
1
-1
1
[ AIEEE AIEEE 2002 ]
+ … + tan
13
n2
(d) 0
3
1
-1
is
n
1
[ AIEEE 2002 ]
( 17 ) The angles of elevation of the top of a tower ( A ) from the top ( B ) and bottom ( D ) at a building of height a are 30 and 45 respectively. If the tower and the building stand at the same level, then the height of the tower is (a) a
( 18 ) If cos (
a
(b)
3
-
3 - 1
,
a(3
(c)
) = 1 and cos (
ordered pairs ( (a) 0
3
3)
( d) a (
2
+
) =
1 e
,
-
3
,
- 1)
[ AIEEE 2002 ]
, then the number of
) =
(b) 1
(c) 2
(d) 4
[ IIT 2005 ]
( 19 ) Which of the following following is correct for triangle triangle ABC having sides sides a, b, c opposite to the angles A, B, C respectively respectively ( a ) a sin
B - C 2
( c ) ( b + c ) sin
= ( b - c ) cos B
C 2
A
( b ) a sin
2
= a cos
A 2
( d ) sin
B
C
= ( b + c ) cos
2
B - C 2
= a cos
( 20 ) Three circles of unit radii are inscribed in an equilateral triangle touching the sides of the triangle as shown in the figure. Then, the area of the triangle is (a) 6 + 4
3
( b ) 12 + 8
(c) 7 + 4
3
(d)
4 +
7 2
3 3
[ IIT 2005 ]
A 2
A 2
[ IIT 2005 ]
15 - TRIGONOMETRY
Page 4
( Answers at the end of all questions que stions ) ( 21 )
If
and
are acute angles such that sin
=
1
and cos
2
=
1 3
, then
and
lies in (a)
3
,
(b)
2
2
2
,
( 22 ) For which value of x, sin [ cot (a)
( 23 )
1
(b) 0
2
2
(c)
-1
5 3
,
( x + 1 ) ] = cos ( tan (d) -
(c) 1
5
(d)
-1
,
x)?
1
[ IIT 2004 ]
2
If a, b, c are the sides of a triangle triangle such that a : b : c = 1 : then A : B : C is (a) 3 : 2 : 1
(b) 3 : 1 : 2
x2
( 24 ) Value of
tan 2
x
x
,
2
[ IIT 2004 ]
(c) 1 : 3 : 2
(d) 1 : 2 : 3
x > 0,
0,
3 : 2,
[ IIT 2004 ]
is alway ways greater than or
x
equal to (a) 2
( 25 )
(b)
5
( c ) 2 tan
2
( d ) sec
[ IIT 2003 ]
If the angles of of a triangle are in in the ratio 4 : 1 : 1, then the ratio ratio of the largest largest side to the perimeter is equal to (a) 1:1 +
(b) 2:3
3
sin - 1 ( 2x )
( 26 ) The natural domain of
(a)
1
-
4
,
1
(b)
2
(c)
1
-
4
,
1
3 :2 +
6
(c)
4
3
for all x
1
-
2
,
1 2
(d) 1:2 +
3
[ IIT 2003 ]
R, is
(d)
1
-
2
,
1
[ IIT 2003 ]
4
3
( 27 ) The length of a longest interval in which the function 3 sin x - 4 sin x is increasing is (a)
( 28 )
3
(b)
2
(c)
2
(d)
[ IIT 2002 ]
Which of the following pieces of data does NOT uniquely determ ine an acute-angled triangle ABC ( R being the radius of the circumcircle ) ? ( a ) a sin A, sin B
( b ) a, b, c
( c ) a, sin B, R
( d ) a, sin A, R
[ IIT 2002 ]
15 - TRIGONOMETRY
Page 5
( Answers at the end of all questions )
( 29 )
The number of integral values of k for which the equation 7 cos x + 5 sin x = 2k + 1 has a solution is (a) 4
( 30 )
(b) 8
Let
0 <
sin (
-
( c ) 10
( d ) 12
[ IIT 2002 ]
<
be a fixed angle. If P = ( cos , sin 2 ) ], then Q is obtained from P by
)
and
Q = [ cos (
-
),
( a ) clockwise rotation around ar ound origin through an angle ( b ) anticlockwise anticlockw ise rotation rotat ion around origin through an angle angl e ( c ) reflection in the line through origin with w ith slope tan ta n ( d ) reflection in the line through origin w ith slope tan
( 31 )
PQ RS
(b)
PQ
RS
(c)
2
2 PQ RS PQ
RS
(d)
PQ 2
RS 2 2
[ IIT 2001 ]
A man from the top of a 100 metres high tower sees a car moving towards the tower at an angle of depression of 30 . After some time, the angle angle of depression becomes becomes 60 . The distance in ( metres ) traveled by the car during this time is ( a ) 100
( 33 ) If
+
(b)
3
=
2
and
( a ) 2 ( tan + tan ( c ) tan + 2tan
( 34 )
[ IIT 2002 ]
2
Let PQ and RS be tangents tangents at the the extremities extremities of the diameter diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals
(a)
( 32 )
α
If
sin - 1
x2 x 2
200
(c)
3
+ )
3
=
100
3
3
, then tan
( d ) 200
[ IIT 2001 ]
3
equals
( b ) tan + tan ( d ) 2tan + tan
x3 - ... 4
cos - 1
x
[ IIT 2001 ]
2
x4 2
x6 - ... 4
2
for 0
lxl
2,
then x equals (a)
1 2
(b) 1
(c) -
1 2
(d) - 1
[ IIT 2001 ]
15 - TRIGONOMETRY
Page 6
( Answers at the end e nd of all questions que stions )
( 35 )
The maximum value of 0
1,
≤
2,
…..
1
(a)
n ≤
(b)
n
2 2
( cos and
2
1
1
( cos
( cos
(c)
2n
)
x
4
4
(a) 0
( 37 ) If f ( (a) (c)
≥ ≥
( sin
0 only when 0 for all real
(c) 1
2
2
2
≥
( 40 )
( cos
2
( cos
n
),
) ….. ( cos
under the restrictions n
) = 1 is
[ IIT 2001 ]
sin x
cos x
cos x
cos x
sin x
cos x
cos x
cos x
sin x
= 0 in the the interval interval
(d) 3
0
(b) (d)
2
(b) b + c
≤ ≤
[ IIT 2001 ]
)
0 for all real 0 only when
≤
0
[ IIT 2000 ]
1 (A - B + C) = 2 2
2
( b) c + a - b
( 39 ) In a triangle tr iangle ABC, ABC , if (a) a + b
…..
(d) 1
+ sin 3 ), then f (
( 38 ) In a triangle ABC, 2ac sin (a) a +b -c
)
is
(b) 2
) = sin
)
1 2n
( 36 ) The number of distinct real roots of
-
1
2
C =
2
2
2
2
(c) b - c - a
2
2
2
(d) c - a - b
[ IIT 2000 ]
, r = inradius and R = circum-radius, circum-radius, then 2 ( r + R ) =
(c) c + a
(d) a + b + c
[ IIT 2000 ]
A pole stands vertically inside a triangular park Δ ABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in Δ ABC, the foot of the pole is at the ( a ) centroid
( b ) circumcentre
( c ) incentre
( d ) orthocentre
[ IIT 2000 ]
15 - TRIGONOMETRY
Page 7
( Answers at the end e nd of all questions que stions )
( 41 )
In a triangle equation ax
2
PQR,
R =
2
.
2
and
tan
Q
are the roots of the
2
+ bx + c = 0 ( a ≠ 0 ), then
(a) a+b =c
(b) b+c =a
(c) c+a =b
( 42 ) The number of real solutions of tan - 1 ( a ) zero
P
If tan
( b ) one
( c ) two
x(x
(d) b = c
[ IIT 1999 ]
sin - 1
1)
x2
x
( d ) infinite
(b) 1
(c) 2
is [ IIT 1999 ]
( 43 ) The number numbe r of values of x where the function func tion f ( x ) = cos x + cos ( maximum is (a) 0
1
2x ) attains its
( d ) infinite
[ IIT 1998 ]
( 44 ) If, for a positive integer n, f n ( θ )
tan
(a)
f 2
(c)
f 4
16 64
θ
(1
2
1 1
( 45 ) If in a triangle PQR,
sec θ ) ( 1
(b) (d)
sec 2θ ) ... ( 1
f 3 f 5
128
1
[ IIT 1999 ]
( b ) the altitudes altitudes are are in H. P. ( d ) the medians are in A. P.
( 46 ) The number of values of 2 3 sin x - 7 sin x + 2 = 0 is (b ) 5
1
sin P, sin Q, sin R are in A. P., then
( a ) the altitudes altitudes are in A. P. ( c ) the medians are in G. P.
(a) 0
32
sec 2 n θ ) , then
(c)
x
6
in the interval
[ 0, 5
]
[ IIT 1998 ]
satisfying
( d ) 10
the
equation
[ IIT 1998 ]
( 47 ) Which of the following fol lowing number( numbe r( s ) is are rational ? ( a ) sin 15
( b ) cos 15
( c ) sin 15 cos 15
( d ) sin 15 cos 75
[ IIT 1998 ]
15 - TRIGONOMETRY
Page 8
( Answers at the end e nd of all questions que stions )
n
( 48 )
Let n be an odd odd integer. If sin n
=
b r sinr , for every every value of
, then b0 and
r 0
b1 respectively are ( a ) 1, 3
( c ) - 1, n
( b ) 0, n
( d ) 0, n
2
- 3n + 3
[ IIT 1998 ]
( 49 ) The parameter, on which the value of the determinant 1
a2
a
cos ( p - d ) x
cos px
cos ( p
d)x
sin ( p - d ) x
sin px
sin ( p
d)x
(a) a
(b) p
(c) d
does not depend upon is
(d) x
[ IIT 1997 ]
2
( 50 ) The graph of the function cos x cos ( x + 2 ) - cos ( x + 1 ) is , - sin 2 1
( a ) a straight strai ght line passing pas sing through the point
and parallel to the X-axis
2
( b ) a straight line passing through ( 0, - sin 1 ) with slope 2 ( c ) a straight line passing through ( 0, 0 ) 2
( d ) a parabola with vertex ( 1, - sin 1 )
[ IIT 1997 ]
( 51 ) If A0 A1 A2 A3 A4 A5 be a regular hexagon inscribed in a circle of unit radius, then the product of the lengths of the line segments A 0 A1, A0 A2 and A0 A4 is 3
(a)
( 52 ) sec
(b) 3
4
2
4xy
= (x
(a) x + y ≠ 0
( 53 )
3
y )2
(c) 3
3
(d)
[ IIT 1998 ]
2
is true if and only if
( b ) x = y, x ≠ 0
(c) x = y
The minimum minimum value of the expression expression sin real numbers satisfying ( a ) positive
3
( b ) zero
+
+
=
+ sin
( d ) x ≠ 0, y ≠ 0
+ sin , where
[ IIT 1996 ]
,
,
are the
is
( c ) negative
(D) - 3
[ IIT 1995 ]
15 - TRIGONOMETRY
Page 9
( Answers at the end e nd of all questions que stions )
( 54 )
In a triangle triangle ABC, sin sin
1 : 3, then
1
(a)
( 55 )
( 56 )
B =
BAD CAD
equals
1 3
(c)
(b)
6
and
3
C =
1
(b) 1
3
If x =
cos 2n n
(c) 2
,
2 3
[ IIT 1995 ]
tan x + sec x = 2 cos x,
lying in the interval
(d) 3
sin 2n
y =
0
. If D divides BC internally in the ratio
(d)
Number of solutions of the equation [ 0, 2 ], is (a) 0
4
n
[ IIT 1993 ]
,
cos 2n
z =
0
n
sin 2n
, for 0 <
<
0
2
,
then ( a ) xyz = xz + y ( c ) xyz = x + y + z
( 57 )
If f ( x ) = cos [ function, then ( a ) f
( 58 )
= -1
2
2
( b ) xyz x yz = xy + z ( d ) xyz = yz + x
] x + cos [ -
(b) f(
) = 1
2
[ IIT 1993 ]
] x , where [ x ] stands for the greatest integer
(c) f(-
) = 0
( d ) f
4
= 2
[ IIT 1991 ]
2
The equation ( cos p - 1 ) x + ( cos p ) x + sin p = 0 in the variable x has real roots. Then p can take any value in the interval
( a ) ( 0, 2 )
(b) (-
, 0)
(c)
-
2
,
2
( d ) ( 0,
)
[ IIT 1990 ]
( 59 ) In a triangle ABC, angle A is greater than angle B. If the measures of angles A and B 3 satisfy the equation 3 sin x - 4 sin x - k = 0, 0 < k < 1, then the the measure of of angle C is (a)
3
(b)
2
(c)
2 3
(d)
5 6
[ IIT 1990 ]
15 - TRIGONOMETRY
Page 10
( Answers at the end e nd of all questions que stions )
x
( 60 ) The number of real solutions of the equation sin ( e ) = 5 (a) 0
(b) 1
(c) 2
x
+ 5
– x
is
( d ) infinitely many
[ IIT 1990 ]
( 61 ) The general solution of sin x - 3 sin 2x + sin 3x = cos x - cos 2x + cos 3x is (a) n
+
n
(b)
8 n n (c) (-1) 2
2
(d) 2n
8
( 62 ) The value of the expression
(a) 2
8
(b) 4
(c)
+ cos
( 63 ) The values of
2 sin 20 o
sin 2
1
sin 2
θ
sin 2
θ
(a)
( 64 )
cos 2
θ
cos 2
(b)
24
4 sin 20 o
(d)
o
is equal to
sin 40
= 0 and
=
2
[ IIT 1988 ]
o
and satisfying the equation
4 sin 4θ
θ
cos 2
1
7
4 sin 4θ
θ
1
θ
5
are
4 sin 4θ
(c)
24
= 0
11 24
(d)
[ IIT 1988 ]
24
In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A. P., then the lengths of the third side can be (a) 5 -
( 65 )
lying between
[ IIT 1989 ]
- sec 20
3 cosec 20
sin 40
3 2
-1
6
(b) 3
3
(c) 5
(d) 5 +
6
The smallest positive root of the equation equation tan x = x lies in 3 3 (a) 0, (b) , (c) , (d) , 2 2 2 2
[ IIT IIT 1987 1987 ]
[ IIT 1987 ]
( 66 ) The number of all triplets ( a 1, a2, a3 ) such that 2 a1 + a2 cos 2x + a 3 sin x = 0 for all x is (a) 0
(b) 1
(c) 3
( d ) infinite
( e ) none of these
[ IIT 1987 ]
15 - TRIGONOMETRY
Page 11
( Answers at the end e nd of all questions que stions )
( 67 ) The principal value of sin
2
(a) -
( 68 )
(b)
3
2
– 1
(c)
3
sin
2
is
3
4
5
(d)
3
( e ) none of these
3
[ IIT 1986 ]
The expression expression 3 sin 4
3
(a) 0
(b) 1
-
sin 4 ( 3
α
(c)3
α)
- 2 sin 6
( d ) sin 4
sin 6 ( 5
α
2
+ cos 4
-
( e ) none of these
α)
is equal to
[ IIT 1986 ]
( 69 ) There exists a triangle ABC satisfying the conditions conditions
( 70 )
( a ) b sin A = a,
A <
( c ) b sin A > a,
A <
( e ) b sin A < a,
A >
1
(a)
cos
1
1
8
cos
( b ) cos
2
2 2 2
3 8
( b ) b sin A > a,
A >
( d ) b sin A < a,
A <
2 2
, b > a
, b = a
1
[ IIT 1986 ]
cos
1
1 8
(c)
8
5 8
cos
(d)
7 8
is equal to
1
2 2
2
[ IIT IIT 1984 ]
( 71 ) From the top of a light-house light-house 60 m high with its base at the sea-level, the angle angle of depression of a boat is 15 . The distance of the boat from the foot of the lighthouse is 3 - 1
(a)
(c)
3
1
3
1
3 - 1
6 17
1
2
60 metres
(b)
60 metres
( d ) None of these
( 72 ) The value of tan
(a)
3
(b)
cos - 1
4 5
7 16
(c)
metres
3 - 1
tan - 1
16 7
2 3
[ IIT 1983 ]
is
( d ) None of these
[ IIT 1983 ]
15 - TRIGONOMETRY
Page 12
( Answers at the end e nd of all questions que stions ) 1 2
( 73 ) If f ( x ) = cos ( ln x ), then f ( x ) f ( y ) -
(a) -1
(b)
1 2
(c) -2
x y
f
f ( xy )
has the value
( d ) none of these
[ IIT 1983 ]
( 74 ) The general solution of the trigonometric equation sin x + cos x = 1 is given by ( a ) x = 2 n , n = 0, ± 1, ± 2, … ( b ) x = 2 n n
+ (-1)
(c) x + n
( 75 ) If A = sin (a) 1 (c)
≤
13 16
2
+ cos
A
≤
2
≤
A
≤
4
-
4
4
, n = 0, ± 1, ± 2, …
3 4 3 (d) 4
( 76 ) The equation 2 cos
2
2
( d ) none of these
1 2
≤
A
≤
1
≤
A
≤
13 16
(a) (c)
( 78 ) If
=
-4
2
sin x = x
x
( c ) tan
, then sin
but not
+
( b ) tan
3
but not
5 4 5
( a ) tan
-4
+
2 2
[ IIT 1981 ]
2
[ IIT 1980 ]
+ x
-2
, 0 < x
≤
2
( a ) no real solution ( b ) one real solution ( c ) more than one real solution
( 77 ) If tan
, n = 0, ± 1, ± 2, …
, then for for all real values values of (b)
1
+
has
[ IIT 1980 ]
is
4
(b)
5 -4 5
-4 5
4
or
5
( d ) none of these
[ IIT 1979 ]
= 2 , then + tan tan
2
2
+ tan
+ tan
+ tan 2 2 ( d ) none of these
2
+ tan
2 tan
2
= tan
2
tan
2
+ tan
= - tan
2
2
2
tan tan
tan
2 2
2 = 1
tan
2 [ IIT 1979 ]
15 - TRIGONOMETRY
Page 13
( Answers at the end e nd of all questions que stions )
Answers 1 b
2 b
3 c
4 b
5 a
6 d
7 c
8 a
9 a
10 c
11 b
12 a
13 a
14 b
15 c
16 b
17 c
18 d
19 a
20 a
21 b
22 d
23 d
24 c
25 c
26 a
27 a
28 d
29 b
30 d
31 a
32 b
33 c
34 b
35 a
36 c
37 c
38 b
39 a
40 b
41 a
42 c
43 a
59 c
60 0
61 b
62 b
63 a,c a,c
79
80
44 a,b, a,b,c, c,d d 64 a,c a,c
65 a
45 d 66 d
46 c 67 e
47 c
48 b 68 b
49 b 69 a,d a,d
50 a 70 c
51 c 71 c
52 b 72 d
53 c 73 d
54 a 74 c
55 d 75 b
56 b 76 a
57 a,c a,c 77 b
58 b 78 a