Preview only show first 10 pages with watermark. For full document please download

Cisco Packet Transport

ccna

   EMBED


Share

Transcript

Cisco Packet Transport Transport Network – MPLS-TP The Challenge IPTV EPL Packet is Growing… Grow SONET/SDH ? Transport Reliability Need VoD Services Business Ethernet EVPL L3 VPN HSI Mobile E-LAN Backhaul SONET/SDH OTN Which Technology ? CapEx OpEx Financials Revenue Expenses WDM PBB-TE MPLS-TP  ASON  ARPU PBB IP/MPLS T-MPLS  Packet Optical Transport System (P-OTS) Packet Eth, IP/MPLS WDM TDM Packet Optical Transport Tran sport System (P-OTS) Metro P-OTS Keys • Predictable, Deterministic •  Resiliency – 50-msec • Bandwidth Efficiency • Legacy Support (TDM) • Integrated ROADM • Service Scalability • Granular Service Differentiation • Network Management Packet-Centric Transport MPLS-TP SONET /SDH OTN P-OTS IP/ MPLS WDM Cisco Packet Transport Convergence Carrier-Grade Standards-based Converged Transport Lower TCO, Capex/Opex Savings Services Rich Service Suite (MEF, MPLS) Service Guarantees Predictable, Deterministic Strong QoS (CIR, PIR) Service Differentiation Technology Agility Converged Optical Transport Convergence Technology Agility Agili ty Services Performance Higher BW Lower Cost/bit Stat Mux Benefits MultiService Access Carrier Ethernet, MPLS-TP MPLS-TP,, TDM, DWDM Integration IP/MPLS Integration Performance Network Resiliency (50 ms) Comprehensive OAM MPLS-TP OAM E-OAM, Fault/Delay MPLS OAM Sync-E,1588v2 Why MPLS-TP ? Bringing proven technology to Transport MPLS-TP leverages flexibility of scale of MPLS and adapts it to transport space: Transport nsport operational model • Tra traffic and services •  Addresses growth in packet traffic • Service flexibility - P2P private lines, Video transport, Multipoint, best effort traffic as wells as legacy services • SONET/SDH like SLA and OAM with granular BW provisioning • High network utilization of transport network • Capex/Opex Savings as Bandwidth increases • Efficient Access & Aggregation saves $$$$ in Core MPLS Transport Profile (TP) Data/Transport ransport • Converge Data/T  Attribute TDM Transp Transport ort Connection Mode Connection Oriented OAM In-Band OAM Protection Switching Data Plane Switching BW Efficiency Fixed Bandwidth Data Rate Granularity Rigid SONET Hierarchy QoS One Class Only Packet Data Network Connectionless (Except TE) Out-of-Band (Except PW, TE) Control Plane Dependency Statistical Multiplexing Flexible Data Rate QoS Treatment MPLS Transport Profile (TP) • Components Data Plane Control Plane  – MPLS Forwarding  – NMS provisioning option  – Bidirectional P2P and  – GMPLS control plane option  – Unidirectional P2MP LSPs  – No LSP merging  – No Penultimate hop hop popping (PHP)  – PW (SS-PW, MS-PW)  – No Routing Required OAM Resiliency  – In-band OAM channel (GACH)  – Connectivity Check (CC): proactive (ext. BFD)  – Connectivity verification (CV): reactive (ext. LSP Ping)  – Alarm Suppression and Fault Indication with AIS (new tool), RDI (ext. BFD), and Client Fault Indication (CFI)  Performance monitoring, proactive and reactive (new  – Sub-50ms protection switch over without IGP  – 1:1, 1+1, 1:N path protection  – Linear protection  – Ring protection MPLS Transport Profile (TP) Characteristics • Connection-oriented packet switching model • No modifications to MPLS data plane • No IPv4/v6 needed for packet forwarding • Interoperates/interworks with existing MPLS and pseudowire control and data planes No LSP merging LSPs may be point to point (unidirectional, co-routed bidirectional or associated bidirectional) LSPs may be point to multipoint (unidirectional) Networks can be created and maintained using static provisioning or a dynamic control plane: LDP for PWs and RSVP-TE (GMPLS) for LSPs In-band OAM (fate sharing) Protection  options: 1:1, 1+1,1:N, Ring-Protection (Achieve GR-253 detection and switching times) Network operation equivalent to existing transport networks • • • • • • • MPLS Transport Profile (TP) • Encapsulation SONET/SDH Ethernet Mapping VT1.5 SPE VC-11/12 DS1 Service E1 Service STS-1/Nc SPE VC-3/4 SPE VT1.5 Muxed Into STS-1 MPLS-TP Circuit Emulation  G F  P  -F   /   H D L   C  SONET STS-1/Nc SPE SDH VC-3/4 SPE over DWDM Network Identifier STS/VC number VT1.5 approximately Equivalent to Pseudowire DS1 Service E1 Service Ethernet Service  8   8   0   0  2  2  .1  .1   a  Q  d  STS-N/VC-3/4 approximates an LSP E  P     P n W   o   P  c     T  o  a E     A   E  p  3     S   C  Ac h Pseudowire Muxing E  8  Function V  0  MPLS Label Switched Path (LSP) Ethernet Service  C  2  .1   Q  , .1   a  d   Ac h E  P  n W  c  E   a  p  3  MPLS Label Switched Path (LSP) MPLS-TP MPLS-TE over DWDM MPLS Transport Profile (TP) • SONET/SDH Analogy SONET/SDH Ethernet Service  8   8   0   0  2  2  .1  .1   a  Q  d  Ethernet Mapping MPLS-TP Ethernet Service E  8  V  0   C  2  .1   Q  , .1   a  d   Ac h  G F  P  -F   /   H D L   C  E  P  n W  c  E   a  p  3  SONET STS-1/Nc SPE SDH VC-3/4 SPE over DWDM MPLS Label Switched Path (LSP) MPLS -TP over DWDM G-Ach Service Granularity (PW) @ 1 Mbps OC-192 STM-64 1 2 3 STS-1 VC-3 STS-1 VC-3 STS-1 VC-3 192 STS-1 VC-3 192 STS-1/VC-3 @ 51 Mbps Fixed SPE Capped at 10 Gig 1 2 3 LSP LSP LSP 10 GigE 192 LSP 192 LSP’s @ 51 Mbps CIR Bandwidth Efficient Service Scalability & Flexibility MPLS-TP Resiliency 1:1 LSP Protection TPE  Attachment Circuit Working LSP  Active LSP Working BFD Session TPE Protect BFD Session Protect LSP Standby LSP • Working LSP provisioned as Active Path between two TPE’s • Protect LSP provisioned as Standby Path between two TPE’s • Activ  Active/Standby e/Standby home in on same node but different interfaces – Network redundancy • MIP’s are agnostic to Active/Standby Designations • LSP Fault Detection via BFD, LDI, & Manual APS Switching In 1:1 Protection the Standby Path is idle until APS  Attachment Circuit MPLS-TP Resiliency Link Down Indication (LDI) Fault Detection & AIS Working LSP Working LSP X TPE  Attachment Circuit Physical Link Failure X TPE TPE TPE  Attachment  Attachment Circuit Circuit • LSP MEP/TPE receives LDI and triggers protection switching TPE  Attachment Circuit Protect LSP Protect LSP • LSP LDI Generated from MIP Physical Link Failure • LSP AIS Generated from MEP or MIP • AIS is a transient, If persistent BFD will detect failure, IF LDI is disabled or between MPLS-TP domains • MPLS-TP LDI Packet will have GAL Label, GE-ACH Header • MPLS-TP AIS Packet will have GAL Label, GE-ACH Header • LDI is equivalent to SONET/SDH AIS • AIS is transient with no consequent APS actions. This is different from SONET/SDH AIS. AIS. MPLS-TP LDI is equivalent to SONET/SDH AIS MPLS-TP OAM OAM Architecture MPLS-TP MPLS-TP  Access  Aggregation Edge T-PE  AC  Aggregation Core Edge S-PE MPLS-TP LSP Segment T-PE MPLS-TP LSP Segment PW LSP OAM MEP  MIP MIP MEP MEP MIP Based on Maintenance Entities Maintenance Entities  Association of two MEPs MEPs Zero or more intermediate MIPs  AC PW Maintenance End Points (MEPs) and Maintenance Intermediate Points (MIPs) Multiple levels   Access MIP MEP LSP OAM For Your Reference MPLS-TP OAM • MPLS-TP LSP/PW G-ACh Packet Structure 13 TC 1 0 0 0 1Version Reserved 1 Channel Type Length Reserved TLV Type Length Value Generic Associated Channel Label (GAL)  Associated Channel Header Header (ACH)  ACH TLV Header MPLS-TP section defined as link connecting two adjacent T-PE GAL as label stack Same ACH structure  ACH TLV (e.g Source, Destination, LSP ID, PW ID) Existing VCCV ACH (RFC) G-ACH Message G-ACh Message Use of GAL not required, but allowed  ACH TLV header defines length of ACH TLV list LSP Label PW Label 0 0 0 1 Version Reserved Length TLV Type TC S TTL TC 1 TTL Channel Type Reserved Length Value LSP Shim Header Pseudowire Shim Header  Associated Channel Header Header (ACH)  ACH TLV Header  ACH TLVs provide additional context for processing of G-ACH message G-ACH message may not require ACH TLVs  ACH TLV (e.g Source, Destination, LSP ID, PW ID) MPLS-TP OAM  Associated Channel (A-CH) Processing MEP MIP MIP  AC PW  AC PW PW • Pseudo-Wire (PW) OAM in MPLS-TP is exactly the same as PW OAM in IP/MPLS • PW OAM is only processed processed between MEP’s • PW OAM is defined by the 1st nibble 0001 in the PW control word Pseudo-Wire OAM MAC Header LSP-L GAL GE-ACH OAM Message 0001 | Ver | Resv | Channel Channel Type • LSP OAM in-band designated by label 13 • LSP OAM can be processed between MEP’s and MIP’s LSP-L PWE-3 L PWE-3 ACH OAM Message 0001 | Ver | Resv | Channel Type MPLS-TP LSP OAM MAC Header MEP MPLS-TP LSP Segment MPLS-TP OAM LSP Continuity Check (CC) Bidirectional Forwarding Detection (BFD) LSP Destination LSP Source BFD Control Packet BFD Control Packet MEP LSP OAM - GAL Label = 13 G-ACH Control Word = 0x01 CC Type = 0x1 Channel Type = 0x7  – BFD MEP MIP MIP MAC Header L1 GAL/BoS Generic ACH Channel Payload 0001 | Ver | Resv | CC, BFD MPLS-TP OAM BFD Remote Down Indication (RDI) TPE Oper Up Oper Up P P TPE X Bi-directional, co-routed MPLS-TP LSP  – 1 - Control Detection Time Expired  – 3 - Neighbor Signaled Session Down BFD X BFD (Up / 0) X BFD (Up / 0) X BFD (Down / 3) X BFD (Init / 3) X remote end point • Sent on direction opposite to failure • Uses existing BFD diagnostics field  – 0 - No Diagnostic Label GAL ACH BFD (Up / 0) • Failure indication sent by local end point to  – 4 - Forwarding Plane Reset  – 5 - Path Down BFD (Up / 0) BFD (Up / 0) BFD (Down / 1) BFD (Down / 1) BFD (Down / 1)  – 7 - Administratively Down • Diagnostics field indicates reason for last change in session state on an end point MPLS-TP OAM LSP Continuity Verification (CV) LSP-Ping LSP Destination LSP Source LSP MPLS Echo Request LSP MPLS Echo Reply MEP LSP OAM - GAL Label = 13 G-ACH Control Word = 0x01 CC Type = 0x1 Channel Type Type = 0x1 – MPLS LSP Ping MEP MIP MIP MAC Header L1 GAL/BoS Generic ACH Channel Payload 0001 | Ver | Resv | CC, LSP-Ping Type MPLS-TP OAM LSP Continuity Verification (CV) – Fault Isolation LSP Destination LSP Source LSP MPLS Echo Request TTL=3 MEP MEP LSP MPLS Echo Reply TTL=2 TTL=1 TPE Midpoint LSP MIP Midpoint LSP MIP LSP OAM - GAL Label = 13 G-ACH Control Word = 0x01 CC Type = 0x1 Channel Type Type = 0x4 – MPLS LSP Echo Request MAC Header L1 GAL/BoS TPE Generic Generic ACH Channel Payload 0001 | Ver | Resv | CC, LSP-Ping Type MPLS-TP OAM Pseudowire Maintenance Entity (PME)  – VCCV RFC 5085 LSP Source  AC CE TPE PME Midpoint LSP Midpoint LSP MAC Header CPT Supports In-Band VCCV Ethernet PW-ACH (IPv4) = 0x21 Ethernet PW-ACH (IPv6) = 0x57 PWE3 Control Word (1st nibbles) = 0x1 Channel Type Type = 0x21 or 0x57 MPLS LSP Ping Payload LSP Destination L1 PWL/BOS  AC CE TPE PWE-3 ACH LSP Ping Payload 0001 | Ver=0x0 | Resv=0x0 | Type =0x21 On-Demand Continuity Check Between MEPs and MIPs NMS Retrieval of PW Path to Populate the Global ID of MIPs/MEPs MPLS-TP OAM Static Pseudowire Status Notification CE1 PE1 BFD CC (Interval x Multiplier) P2 P1 Bi-directional, co-routed MPLS-TP LSP Label ACH PE2 CE2 BFD CC (Interval x Multiplier) OAM Msg (Status) Static PW Status Static PW Status Static PW Status Static PW Status Static PW Status 1 per sec 1 per refresh timer (default 30s) • Static PWs require in-band status notification (no LDP notification) • Existing PW Status TLV TLV sent over G-ACh • Three messages sent at 1 per sec to set/clear fault then continuous messages sent at a longer interval • Native service OAM or port shutdown can propagate failure to remote CE MPLS-TP OAM LSP Loss Measurement (LM) LSP Destination LSP Source L1: LM Query L2: LM Response MEP Querier  MIP MIP MEP Responder  • For LM, each “ counterstamp” records the count of packets or octets sent or received over the channel prior to the time this message is sent or received • For LM, loss is measured as a delta delta between successive messages. For example, a loss measurement in the forward direction is computed as (Q_TxCount[n] – Q_TxCount[n-1])  – (R_RxCount[n] – R_RxCount[n-1 R_RxCount[n-1]) ]) • Thus LM requires a small amount of state at the querier: it retains the counter values in MPLS-TP OAM LSP Delay Measurement (DM) MEP Querier  LSP Source LSP Destination T1: DM Query T2: DM Query T3: DM Response T4: DM Response MIP 1. 2. 3. 4. MIP MEP Responder  The querier begins a measurement session by initiating a stream of query messages at a specific rate Time T1: Query message exits the Querier TX port and is stamped with a time or counter value Time T2: Query message enters the Responder RX port and is time- or counter-stamped Responder inspects and processes the query and generates a response message, which is a copy of the Query with the Response flag set 5. Time T3: Response message exits the Responder TX port and is time- or counter-stamped 6. Time T4: Response message enters the Querier RX port and is time- or counter-stamped 7. Querier now has all four data values and can compute a measurement MPLS-TP OAM Overlay Model Ethernet OAM and MPLS-TP OAM Operator A CPE MEP Operator B CPE MIP MIP Ethernet OAM MEP* MEP MEP* MPLS-TP Pseudowire OAM MEP MIP MPLS-TP LSP OAM MEP MEP MEP MIP MEP MEP MPLS-TP LSP OAM Notes:  All E-OAM Sessions Will Transp Transparently arently Traverse Traverse the MPLS-TP Network Network Domain The E-OAM Session Will Start at the Attachment Attachment Circuit When the Services Starts on the MPLS-TP TPE MPLS Interworking Pseudo-Wires Form a Natural Bridge MPLS-TP  Access PW Segment over MPLS-TP • • •  Aggregation Core Edge • MPLS-TP IP/MPLS-(TE) Aggregation  Access Edge PW Segement over MPLS/LDP PW Segment over MPLS-TP The MPLS PW works over both MPLS-TP and IP/MPLS-(TE). The PW OAM Header is replaced with the LDP Header when going from static to dynamic This enables End to End Service Visibility and Management MPLS-TP PW is a standard MPLS PW New IGP Label Change VC ID symmetric TTL Decremented by 1 EXP Bits copied S-PE Cisco Carrier Packet Transport Cisco CPT 600, 200, & 50 System Cisco CPT 200 Cisco CPT 600 Cisco CPT 50 Feature Rich, Carrier Class and Manageability o  Advanced Standard Based MPLS-TP o Innovative Distributed Satellite Architecture o Fully Carrier Ethernet and IP/MPLS supported o Runs CTC, over 10 years of Network Management Experience Based on over 10 years of Cisco Optical Transport Experience Green Packet Transport Carrier Class Resiliency > 50ms Link Protection Standard Base MPLS-TP Fully Redundant Power  Architecture Rich Service Features (Video Optimization) Fully Redundant Software  Architecture > 50ms Network Protection Space & Power Optimized > 50ms Node Protection End-to-End Manageability  A to Z Point and Click Provisioning & Maintenance Industry standard CLI Carrier Packet Transport (CPT) System Remote CPT 50 Mobile Backhaul Co-Located 80KM CPT 600 Ethernet Services CPT 50 FTTX & TDM CPT 200 Feature Rich, Carrier Class and Manageability  Advanced Standard Standard Based MPLS-TP MPLS-TP o Innovative Distributed Satellite Architecture o Fully CE and IP/MPLS support ( Unified-MPLS) o IP/MPLS MPLS-TP Ethernet OTN DWDM Cisco POTS Architecture  Applications – TDM Lease Line, Ethernet Lease Line, Mobile Back-Haul, Residential, Smart Grid Utility,, Data Center Interconnect & Cloud Based Utility  Architectural Elements- Unified MPLS, E2E Management, Management, Integrated Packet Packet Transport, TDM, & DWDM Cisco A-Z Management  Aggregation  Access  ASR901 CPT 200/600 RBS Core Cloud Service ASR 9K 2G/3G/4G Node Cloud Service Core CPT 50 MPLS(TP) over 10/40/100 Gig DWDM Residential STB Utility Business Corporate Legacy CPT 50 TDM TDM ASR903 IP/MPLS Aggregation Node CRS-3 Unified MPLS ELINE, ELAN, TDM Transport Pre A g g reg ation C P E  • CPT 50 •  A S R 901 w/Edge IP/MPLS Unified MPLS Transport Aggregation • CP T 200 w/MSTP PE Edge Core •  ASR9k • CRS 3 Cloud • • EOS Umi Enabling Next-Generation Transport Savings Trust Agility www.cisco.com/go/cpt Begin the Transformation with CPT Q&A We value your feedback. Please be sure to complete the Evaluation Form for this session.  Access today’s presentations at cisco.com/ca/plus Follow @CiscoCanada and join the #CiscoPlusCA conversation